品牌:ABB | 规格:全新 | 材质:原装 |
产地:国外 |
3HAC0341-3
1.通过以下三点推断出结果
1.1同样的环境下,同一组件开路状态比工作状态温度高。
关于这一点,大家可能会觉得很奇怪,不能理解,下面就对此做一个理论上的分析:
首先,对于单片电池片来说,其等效电路图如图2所示,在开路状态下,有光照时,内建电场所分离的光生载流子形成由N区指向P区的光电流即IL,而太阳电池两端出现的光电压即开路电压Voc却产生由P区指向N区的正向结电流ID,稳定光照的时候,光电流恰好等于正向结电流,即ID=IL,所以单片电池片外部尽管是开路,内部也是有电流的,且被单片电池自己本身消耗,转为热能了。
其实这个也可以从大的方向,能量守恒去理解,开路时,电池片输出功率为0,光能转为电能,电能又转为热能;工作的时候,一部分光能转为电能输出了,所以开路的温度比工作的时候温度要高。
电流大小方向跟上面的理论解释相符,此图来自UNSW大学的教材,只是把原图做了一些简化。
1.2排除组件对应串有回路。
假如对应串之间有回路,由接线盒发热可知,二极管在工作了,那么这串必然形成一个近似短路的回路,出现的热斑电池一般是一片或者几片,升高的温度不会那么均匀。这个知识点非常关键,也是很多人忽视的地方,因为二极管确实是本身已经正偏了,这样很容易就想到二极管的问题,容易误导大家。只有通过对比常规热斑现象,才能排除对应串有回路,也就是说,对应串是开路状态。
1.3接线盒也发热,说明二极管在工作,符合对应串开路时,对应二极管就会启动。
2.现场验证
通过以上,可以得出,对应的汇流条没有接好,第二次去现场更换组件的时候,确认跟推断一致,并使用万用表测试了单片组件电压,开盖前都只有2/3,如图4所示,维修好之后,电压正常,如图5所示。开盖后的其中两个接线盒照片,明显是没有卡接到位,如图6和图7所示。
3.重现实验方法
第一步,准备合适的可变散热电阻器,红外相机,万用表,试验组件。
第二步,断开边上一根汇流条,断开后再测试一下开路电压,保证其断开,并测量一下短路电流。
第三步,连接组件两端到可变散热电阻器,把可变电阻调到3欧姆左右,然后适当调整电阻器,使工作电流调整到短路电流的80%左右。
第四步,放在阳光下暴晒,直到组件温度稳定。
第五步,使用红外相机进行拍照。
“精度”是用来描述物理量的准确程度,其反应的是测量值与真实值之间的误差,而“分辨率”是用来描述刻度划分的,其反应的是数值读取过程中所能读取的小变化值。简比喻:一把常见的量程为10厘米的刻度尺,上面有100个刻度,小能读出1毫米的有效值。那么我们就说这把尺子的分辨率是1毫米,他只能1、2、3、4……100这样读值;而它的实际精度就不得而知了,因为用这把尺读出来的2毫米,我们并不知道他与真实的2毫米之间的误差值。而当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。我们不难发现,它还有100个刻度,因而它的“分辨率”还是1毫米,跟原来一样!然而,它的精度显然已经改变了。
对于编码器来说,“分辨率”除了与刻线数有关外,还会因电气信号方面的影响而改变,它是可调的,可控的,它可以随着对信号的细分而改变,细分倍数越高,分辨率越小,但是细分倍数越高,引入加大的误差就越大。而精度,更多的偏向于机械方面,一个产品生产出来后,他的精度基本已经固定(有些的产品可以对信号进行补偿等来提),这个数值是通过检测出来的,它与产品的做工,材料等综合性能息息相关,我们难以通过计算来得出一个具体的数值作为精度的依据,大多只能在使用的过程当中判断出精度的好坏来。
例如,对于13bit的,其码盘上的位置数为:8192,则:计算出的分辨率为158角秒,也就是说,在读取数值的时候,要求数值间的跳动是158角秒,如果要读取的第一个数值是0,则第二个读取的数值要大于158,若要小于158,则我们需要选取更小的分辨率。当要读取158这个数值的时候,由于误差的存在,并不可能得到的158秒,编码器所读取出来的158秒与真实158秒之间的误差,就取决于精度了。所以说,精度,是在分辨率的基础上来谈的。
而并非越细分得到小的分辨率就越好,因为细分会引入误差和扩大误差,过度的细分将无法保证精度!需要多少倍的细分,能做到多少倍的细分,前提是在保证精度的基础上进行的,因为精度在使用前的不可见性而高倍细分是不负责任的。码盘质量越高,刻线越好,信号质量信号越好,细分后产生的误差就越小,这受到一台编码器综合性能的影响,这也就是为什么会在相同的参数下,会有不同品牌,不同价位编码器的一个原因。
例如,我们要读取的数值为1、2、4、7、8,我至少要选择1个单位的分辨率,选择2个单位的分辨率是显然不行的,因为我们读出了1这个数值,则2是读不出来的,在选择1个单位分辨率的基础上,我们读出来的1与真实的1的误差就是精度。机床上的数控系统对于直光栅是有分辨率的设定的,需要读取的数值间隔小于分辨率,机床就有可能会抖动或出错等。目标任务
监视、分析以及控制能源使用,记录水泥熟料生产线各个环节和设备的能耗状况,记录分析和评价整体能耗费用水平,从而降低每个环节和线路能源的整体使用成本,同时将能源数据升华为有价值的信息,用于掌握和分析各个部分的能源使用情况。将能源成本分摊到每个车间、班组、设备、生产环节或线路,并与绩效考核挂钩。自动生成A、B、C、D 各班能源消耗统计及主要设备停机次数、运转时间,并对用能情况通过曲线、棒图等形式表示出来,便于通过能源数据的收集和设备状态的分析,进一步发现能源使用漏点和节能空间比较大的环节,评估各项节能措施和设备的实际效果。
2 总体设计
能源管理系统借助现代化网络技术和计算机技术实时监视各种运行能源参数,不断地传送至系统服务器中,使运行管理人员可以通过监控中心了解系统的运行工况,简便地实现各种数据分析。通过该系统,能够记录各个车间和主要设备的能耗状况,记录分析和评价整体能源费用水平和能耗费用的分解,发现能耗的过度消耗点,实时监测能耗信息,调动生产者的积极性,帮助提高节能减排的效率。
2.1 系统组成
该系统主要由现场监控设备(主要包括各种智能仪表)、通讯设备(工业计算机数据环网)、能源管理系统软件3 部分组成。一次传感仪表主要采用施耐德公司产品,数据采集器、数据处理服务器、网络服务器、网络通信设施、主机及终端显示屏等全部采用国内先进产品。
2.2 系统结构
该系统数据采集全部来自于现场智能仪表,与工业控制网络完全隔离,确保了工业控制网可靠稳定运行。系统与地面管理数据网络互联,实现了WEB 信息传输与发布。系统基于TCP/IP 架构,具备与其他子系统互联互通接口。系统内部能源监控和管理系统采用分层分布式结构,方便用户的管理和维护工作。系统采用的能源监控和管理软件。系统原理
通过该系统实时获取能源消耗监控点能耗数据,对能源供应、分配和消耗进行监测,实时掌握能源消耗状况,了解能耗结构,计算和分析各种设备能耗标准,监控各个运营环节的能耗异常情况,评估各项节能设备和措施的相关影响,并通过WEB 把各种能耗日报报表、各种能耗数据曲线等发布给相关管理和运营人员,分享能源信息化带来的成果,完成对企业能源系统的监控及电力负荷耗能状态的监测和管理。为节能工程提供数据支撑。
2.4 系统功能
1)实时监测能源数据。准确的能耗数据是节能工作的基础。能源管理系统可以根据实际需要,对水泥熟料生产各工艺,包括石灰石破碎、原料粉磨、煤粉制备、熟料烧成、余热发电等能耗信息进行实时监控。所监控的数据包括电能数据、蒸汽数据、煤耗数据、压缩空气数据、用水流量及原料消耗量等。
2)形成重要能耗报表。定期提供单位熟料电耗、煤耗、水耗、气耗等综合能耗信息,并对各生产工艺环节进行单耗、总耗统计;报表分为日报、月报、季报、年报等几种,分析电、煤、水、压缩空气、蒸汽消耗情况,以及主机设备运行时间、停机次数等信息。系统还可以分析对比不同时期,同类、不同类设备之间的耗能状况,为发现节能漏点,提供数据参考。
3)分析能耗负荷特性。以图表、棒图、曲线等方式,进行一系列负荷对比分析,包括单位能耗对比,重要负荷对比,一、二线同类负荷用能对比等;系统将分析结果长期存贮在数据库中,同时考虑能源消耗、生产计划、产出多方面信息,总结经验,使设备以经济合理的方式运行,实现系统的节能降耗。
4)细化成本管理。科学准确的界定和分析各部门、班组用能成本,可实现对各车间及熟料线A、B、C、D“四班三运行”模式下各班能源消耗数据统计分析,并能做到班、日分析,使能耗分析更加准确、及时、细化,提升了对能耗成本的控制能力。
通过对比各部门和班组能耗数据,可以发现不良的操作习惯,形成科学的管理和考核办法。
5)预警并诊断能耗异常情况。对不符合工艺操作流程的用能设备、各测量点能源消耗的异常情况进行自动诊断和报警提示。对超出功率范围的能耗设备进行报警、对重要设备运行匹配状况提出诊断信息。中央控制室管理人员可根据系统提示,及时作出科学处理,有效防止跑冒滴漏现象,为生产线稳定运行提供可靠保障。
2. 软件特点
上位机软件为Acrel-5000能耗监测系统组态软件,该软件是对现场能耗数据进行采集与监测的软件,大的特点是能以灵活多样的“组态形式”而不是编程方式来进行系统集成,它提供了良好的用户开发界面和简捷的工程实现方法,只要将其预设置的各种软件模块进行简单的“组态”,便可以非常容易地实现和完成对现场数据的采集与监测功能。Acrel-5000能耗监测系统具有友好的人机交互界面,可实时和定时采集现场设备各参量及开关量状态,并将采集到的数据上传给数据中心存储。系统还提供了实时曲线和历史趋势曲线分析,符合用户设计需要的报表、事件记录和故障报警等功能。整个系统可以实现所有回路能耗的采集和统计,实现了远程自动抄表、能耗监测功能。
1)运行状态监测:通讯异常报警提示。
2)用户管理:不同用户权限具备不同操作功能,各级权限的口令修改操作功能,具有权限防误功能。
3)能耗报表、棒图:实现了所有能耗报表的按时间查询,分为日、月、年报表等,任意分类、分项实时能耗棒图显示。
4)打印及导出:所有报表及界面可打印,或以EXCEL、WORD 格式进行导出。
3 网络实现方案
系统监控中心设在中央控制室,作为能源管理系统的数据和管理中心,承担整个能源管理系统数据的采集、存储、统计、分析功能,同时管理整个系统的用户权限和Web 发布功能。整个系统采用光纤、以太网总线、RS485 等传输介质,组建独立的、的通讯网络。主干线采用工业级光纤环型以太网络,环型主干网共设立11 个网络节点,包括监控中心、总降压站、余热电厂电气室、一线窑头电气室、一线原料粉磨电气室、一线原料处理电气室、二线窑头电气室、二线原料粉磨电气室、二线原料处理电气室、石灰石破碎电气室、煤粉制备电气室,其它电气室、工作间等,信号采用光纤、RS485 或信号电缆就近连接到
这10 个节点之一,实现与监控中心的数据传输。
能源管理系统采用分层分布式网络结构(图1),系统自下而上分3 层:现场监测层、通讯层和系统管理层。
图1 某水泥厂能源管理系统网络结构
3.1 现场监测层
现场监测层是指直接采集现场设备数据并具备上传功能的现场监测设备,包括流量计、电力参数测量仪、压力传感器、电子秤以及可编程控制器PLC 等。这些监控设备完成信号采集、处理,并转换为通讯信号,接入到网络通讯层。东华水泥公司能源管理系统现场监测层将监测8 个子系统的现场数据:电能子系统、用水子系统、供煤子系统、柴油子系统、压缩空气子系统、蒸汽子系统、原料子系统、烟气子系统。是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的<反射光学>(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部<光学全书>,讨论了许多光学的现象。
光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望远镜和显微镜的应用大大了几何光学的发展。
光的本性(物理光学)也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如干涉、衍射等,用光的波动性就很容易解释。於是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。
随着先进的光学技术的不断更新,越来越多的光学技术人员发表了专业的光学技术论文。本文带您看2012年OFweek光学网技术论文:
一、光学零件加工主要难点的分析
本文根据光学零件在当今科学技术中的重要作用,阐述了球面及非球面光学零件的各种加工方法及其难点,讨论解决加工难点的方向和可行方法。
1光学零件的重要性及其加工技术的现状 一、光学零件加工主要难点的分析
本文根据光学零件在当今科学技术中的重要作用,阐述了球面及非球面光学零件的各种加工方法及其难点,讨论解决加工难点的方向和可行方法。
1光学零件的重要性及其加工技术的现状
随着现代科学技术的不断发展,光技术在航天、航空、天文、电子、激光以及光通讯等众多领域的应用越来越广泛,在激烈竞争的科学技术、经济和国防等领域显得越来越迫切和重要。而且光技术中所需的光学零件越来越向、微型化和超大型化方向发展,这就使过去的传统光学零件加工技术很难适应新的发展需求。为此,各技术先进国家投入大量的人力物力研发加工各种光学零件的新技术。由于光技术中所需的光学零件的种类和形状很多,所涉及的加工技术的设备和加工方法种类也很多。其中镜头的加工技术具有代表性。当前就透镜和反射镜的加工技术,除传统加工技术外,已研发出的有数控车削技术、数控磨削技术、数控抛光技术、塑料注塑技术、玻璃模压技术、激光飞秒加工技术、复制技术和电解技术等等。而新近所研发出的多种加工技术几乎都是为了解决非球面镜头的加工问题而提出的。但每一种加工方法均有其应用范围的局限性。如数控加工、磁流变抛光和离子抛光适用于单件小批量,而注塑、模压和复制等技术适用于大批量加工。一般而言,不论单个玻璃透镜,还是用于注塑和模压的模具的型腔,均需使用磨削方法精磨后再抛光才能达到精度和粗糙度的质量要求,所以精磨是保证精度和提高加工效率的重要工序,为了更加提高加工效率,目前国外有的学者正在进行以磨削代替抛光的研究。由于磨削和抛光机理不同,能否真正实现以磨代抛很难预言,但就当前情况而言,从加工效率考虑,主要是以磨削方法大限度地提高面形精度和降低表面粗糙度,而以抛光方法终来保证表面质量并对面形进行微小修正。
如何提高精磨的面形精度、降低表面粗糙度是提高光学透镜加工效率的重要措施之一。为此作者对精磨过程进行了分析,讨论了精磨加工中的难点和改进的方向以及可行方法。
2光学零件加工原理及方法
由于光学零件的种类和形状多种多样,研发出的加工原理及方法也种类繁多,可查得具体的加工原理有50多种。但就其加工原理大体可分为如下四大类:变形加工原理,附加加工原理,变质加工原理和去除加工原理。
(1)变形加工原理:有热变形、注塑成型、模压等。
(2)附加加工原理:有涂镀、蒸镀、离子镀,、电镀、电铸和树脂复制等。
(3)变质加工原理:有以渗透的方法沿轴向或径向改变材质的折射率的方法。
(4)去除加工原理:有传统手工研磨抛光、成型工具轨迹成型、仿形靠模轨迹成型、机构轨迹成型和数控轨迹成型方法等。 对上述所有加工方法的原理进行分析,容易得出轨迹成型原理是基本的加工原理的结论。如变形加工方法中热变形、注塑成型以及模压成型都预先用一种轨迹加工方法制好一种模具才行,附加加工方法中的涂镀、蒸镀、离子镀、电镀、复制以及电解,也事先有一个按某一种轨迹方法加工好的工件或模具才行,变质加工方法中也是事先有一个按某一种轨迹方法加工好的工件,才能实施离子渗透来改变轴向或径向改变折射率,而所有去除加工方法全都是直接用某一种轨迹成型的。因此,对所采用的具体轨迹成型原理的分析是查找加工难点的合理、有效的分析方法。
3光学透镜加工难点的原因分析
不论用任何一种方法加工一个零件,其面形精度和表面质量是同时产生的一种质量状况,就当前加工技术而言,单纯要求很的面形或单纯要求很高质量的表面,并不是很难的技术,但同时要求很高的面形精度和很高的表面质量是一种很难的加工技术,而光学零件加工技术就是这样一种很难的加工技术。所以光学零件加工技术也是代表一个国家超精密加工技术的水平。作者从分析现今普遍所采用的几种加工方法入手分析了加工的主要难点所在。
3.1传统的手工加工方法的难点
光学零件的原始加工方法是从手工加工方法开始的,而且至今是一种对少量的超小型或大型或特殊形状的光学零件加工非常行之有效的加工方法。实际上,人手是“”的,光学加工“手艺人”手拿着工具一点一点地去除多余部分,边加工、边检测,直到合格为止,这是一种以工具的某一部分轨迹逐渐去除材料的轨迹加工方法。手工加工方法,具有加工品种和尺寸多样,设备和工具简单、投入少、灵活等优点,但加工周期长、重复性差和要求操作者技术水平高等缺点使其不适应批量和大量生产。手工加工方法造成上述缺点的根本原因在于操作者所依据的加工轨迹是非常随意的工具的轨迹,而不是加工中可依据的准确轨迹所致。
二、近朗伯光型LED透镜的光学设计
根据朗伯光源的特点,定义近朗伯光源函数,设计LED透镜的光学模型,求得LED的截面曲线方程,运用龙格库塔法求解方程并在MATLAB中使用多项式拟合获得相关数据及修正后的数据,通过Tracepro仿真得到希望的LED近朗伯光源封装模型数据及仿真效果。提出一种LED近朗伯光源光学模型封装的简化设计方法。
朗伯光源是自然界广泛存在的一种光源,太阳、毛玻璃灯罩、积雪、白墙均可看作朗伯光源。LED芯片本身就是朗伯光源,发光光束角2θ1/2为120°,由于光束角较大,其发光强度较低,且早期的芯片光电转换效率也较低,为获得较大的光强,需要设计LED的封装透镜光学结构,控制LED的出光光束角,将其光束集中在的方向,于是便出现了不同光束角如120°、90°、60°、30°等的LED器件。光束角为120°的LED朗伯光型光源各向同性,是较理想的光型。对应其他发光光束角的LED器件,通常设计为近朗伯光源的封装光学透镜以期获得较好的出光光型。任意方向的Lθ=Io/ds为值,故人眼在任意方向观看朗伯光源所感知的亮度是相同的,即所谓朗伯光源是各向同性光源。
通常LED行业将LED器件的光束角2θ1/2作为衡量光束发光角度标准。半值角θ1/2是指LED发光强度值为轴向强度值一半时的发光方向与发光轴向(法向)的夹角。由式(1)知,Iθ=Io/2,cosθ=1/2,故朗伯型光源的出光光束角2θ1/2为120°。
2近朗伯光源
在LED一些应用中,要求光束能集中在的方向上。如光束角2θ1/2为90°、60°、30°等的LED器件,其光束角2θ1/2不等于120°,此时LED器件发光不能表现为朗伯光源特征,但在LED行业通常用朗伯光源来衡量LED光源配光质量,于是出现了非理想余弦分布的近朗伯光源LED器件,虽然亮度不能各向同性,但近朗伯光源也能表现出符合人眼视觉特征的某些特点,如光强分布曲线可导、亮度连续变化等,其光强分布函数可以表示为
A10VO71DR/31R-PSC92N00-S1404 AXIAL PISTON
A10VO71DRG/31L-PRC92K08 PISTON PUMP BOSCH REXROTH
A10VO60DFR1/52L-PUC61N00-SO547 PUMP BOSCH REXROTH
A10VO60DFR1/52R-PUC61N00-SO547 PUMP
A10VO100DFR1/31L-VSC61N00 -SO107 PUMP BOSCH REXROTH
A10VO60DRG/52L-VUC61N00 AXIAL PISTON PUMP BOSCH REXROTH
LA10VO60DRG/52R-PSC62N00 AXIAL PISTON PUMP
AA4VSO125DR/30R-FKD63N00 AXIAL PISTON PUMP
LA10VO45DFR1/52L-PUC61N00 AXIAL PISTON PUMP REXROTH
LA10VO71DFR1/31L-PSC91N00 AXIAL PISTON PUMP
LA10VO71DFR1/31R-PSC91N00 PISTON PUMP REXROTH
LA10VO71DRG/31R-PSC92N00 AXIAL PISTON PUMP
A10VO71DR/31R-VSC94N00 AXIAL PISTON HYD PUMP
A10VO140DFLR/31R-PSD62NOOS1100 PUMP REXROTH
A10FM45/52W-VWC64N00 MOTOR BOSCH REXROTH
A10VO28DRG/31L-VSC62K52 PUMP BOSCH REXROTH
A10VO71DR/31L-PSC92K01 S1404-3WE6A6X/EG24N924 COMBO
A10VO71DR/31L-PSC92K02 S1404 3WE6A6X/EG24N9Z4 COMBO
A10VO71DRG/31R-PRC92K08 BOSCH REXROTH
AA10VSO71DR/31R-PKC92N00-SO239 BOSCH REXROTH
A10VO71DR/31L-PSC91N00 PUMP BOSCH REXROTH
A10V071DFR1/31R-PRC62-K68 PUMP BOSCH REXROTH
A10VO71DR/31R-PSC92N00 PISTON PUMP BOSCH REXROTH
A10VO71DFR/31L-PSC92K02 AXIAL PISTON PUMP BOSCH REXROTH
A10VO71DFR/31R-PSC92N00 AXIAL PISTON PUMP BOSCH REXROTH
A10VO71DFR/31R-PSC92K07 AXIAL PISTON PUMP
A10VO45DR/31R-PSC62K03 PISTON PUMP BOSCH REXROTH
AA6VM160HD1/63W-VSD520B BENT AXIS MOTOR BOSCH REXROTH
AA4VG250EP2D1/32L-NSD60F001DX-S AXIAL PISTON PUMP
AA6VM80EP1/63W-VSC510HB-ES MOTOR FOR BOSCH REXROTH
AA4VG125HD3DM1/32L-NSF52F021D PUMP BOSCH REXROTH
A6VE160EP1/63W-VZL010HB-E PISTON MOTOR BOSCH REXROTH
AA6VM160HD1/63W-VSD510B-E MOTOR REXROTH
A6VE160EP1/63W-VZL020HB MOTOR BOSCH REXROTH
AA10VG45HD3D1/10L-NTC60F043D AXIAL PUMP
AA4VG125EP4DT1/32R-NSF52F071DH-S PUMP FOR BOSCH REXROTH
AA4VG125EP4DT1/32R-NSF52F001DH-S PUMP